UNISPHERE

e

he Symbolic Stream Generator {SSG)

is a powerful and flexible macro-writ-

ing tool for Unisys 1100/2200 com-

puters. If you work with other
operating systems [such as MVS or MS-
DOS), you probably know that they pro-
vide a macro or proc facility as an
inherent part of their job control lan-
guage. The OS 1100 Exec does not
provide such a facility and, were it not for
SSG, this would be a major deficiency.
With SSG, however, we have a macro
tacility far richer than most operating sys-
tem-supplied ones.

This article provides some tips on writ-
ing maintainable SSG skelefons and us-
ing SSG to implement Third Normal Form
(3NF) relations. We'll discuss how to use
SSG to construct a quasi-relational data-
base. This doesn't mean you can use
SSG instead of a real relational database
[such as Relational Data Management
System [RDMS] or ORACLE) for major
applications. Instead, you'll leamn how

ou can incorporate principles of the re-
rctionol data model into SSG skeletons.

This is not an argument for the value of
the relational model. The arguments for
and against this model are well-known.
The strongest defense | have found is in

E.F Codd's The Relational Model for Da-

tabase Management: Version 2 (Ad-
disonWesley, 1990).

Example of 3NF Relations

The number of applications you can

Guidelines for More Maintainable SSG Skeletons

By Steve J. Martin

write using SSG s limited only by your
imagination. | use it as part of jobs that
allocate Transaction Processing (TIP) files,
save and recover databases, compile
pro?roms, make security changes and
perform many other technical support
tasks that require “smart” job control.

In the rest of this article, we'll consider
a trivial set of Stream Generation State-
ments {SGSs} that keep track of a system's
disk packs. These SGSs might be part of
a larger application that, for example,
generates Executive Control language
(ECL) to catalog and reserve TIP files. For
clarity and brevity, we'll keep things as
simple as possible. {For the uninitiated,
SGSs are symbolic files or elements con-
taining parameters that an SSG skeleton
program uses to generate output, control
execution flow, elc.)

Consider the SGSs in Figure 1. The
EQUIPMENT SGS describes the two
types of disk equipment used at the site.
This SGS has two fields. The first field
contains the model number. The site has
model 9720 and model 9494 disk
drives. The second field indicates stor-
age capacity in software tracks. A
model 9494 disk drive holds 95,000
tracks.

The DISKPACK SGS describes the disk
drives installed. This SGS contains five
fields. The first field gives the physical
device name by which the hardware
complex knows the disk. The second field
describes the model number of the disk.

25

1100/2200 Forum

You can see that this refers to the first field
of the EQUIPMENT SGS. The third field
describes the current status of the disk
drive {up, down or reserved). The fourth
field is the logical packid by which pro-
grammers know the pack. The fifth field is
a flag indicating whether the disk drive is
fixed or removable. (We'll explain the
purpose of the backslashes later.}

You can probably think of other attrib-
utes of disk drives such as the prep
factor and the amount of space currently
in use. We've omitted these for ease of
presentation.

Now that we've seen the actual values
of the SGSs describing the disk drives on
the system, let's generalize. The SGSs in
Figure 1 implement two relations. The
EQUIPMENT SGS implements an EQUIP-
MENT relation of degree two, uniquely
identified by model number. The DISK-
PACK SGS implements a DISKPACK rela-
fion of degree five, uniquely identified by
device name and supporting attributes for
model number, pack status, logical pack-
id and removability.

Thus, each SGS label implements o
different relational table. The label of the
SGS represents the name of the relation.
Notice that the model number attribute of
the DISKPACK relation is a foreign key.
This means that it relates a disk pack to
another relation — in this case, the
EQUIPMENT relation. For example, if we
want to know the storage capacity of disk
DO1, we use its model number to find the
appropriate EQUIPMENT entry.

Guidelines for Using SSG

SSG is a special-purpose, high-level
programming language. As such, we
must use it in a consistent and disciplined
manner if we are to write good skeletons
(as opposed to those that merely work|.

Here are three general guidelines for
good SSG programming:

e Use SSG symbolically rather than po-

sitionally.

« Capture as much meaning as possible

in the SGSs.

e Since SGSs act as the data files of

SSG, they benefit from being in 3NF.

You can deny any of these guidelines
while accepting the other two. Indeed,
although | strongly support normaliza-
tion, | occasionally violate it for perform-
ance reasons. In general, however, its
advantages are great and | always start
by normalizing my data. So, any depar-
tures from 3NF are carefully considered
ones.

The following specific SSG tips provide

INISPHERE

SGSs to Describe Disk Drives

EQUIPMENT 9720 90000

EQUIPMENT 9494 95000

DISKPACK D01 9720 up
DISKPACK D02 9720 up
DISKPACK D03 9720 upP
DISKPACK D04 9720 upP
DISKPACK D05 9494 up
DISKPACK D06 9494 UP
DISKPACK Do7 9494 up
DISKPACK Dos 9494 DN

DRS001 FIX

DRS002 FIX
DRS003 FIX
REMO005 REM
REMO001 REM
REMO002 REM
REMO003 REM
\ \

MetaSGSs
RELATION EQUIPMENT 1 EMODEL . model number
RELATION EQUIPMENT 2 TRACKS . tracks
RELATION DISKPACK 1 DEVNAME . device name
RELATION DISKPACK 2 DMODEL . model number
RELATION DISKPACK 3 STATUS . status
RELATION DISKPACK 4 PACKID . loglcal pack-ld
RELATION DISKPACK 5 FIXREM . FIX or REM

Code to Process RELATION SGSs

*INCREMENT R TO [RELATION]

*LOOP R

*SET [RELATION,R,3,1] = [RELATION,R,2,1]

ways you can apply the three general
guidelines.

1) Do not make SGSs positional by row.
It should not matter whether any particular
row precedes or follows any other row in
a set of SGSs. For example, we should
not count on the first DISKPACK SGS to
always be a fixed disk. Instead, we
should include an attribute that describes
whether or not a pack is fixed (as shown
in Figure 1).

2) Do not use subfields. The basic SGS
reference in an SSG skeleton is in the
following form:

[label,occurrence field, subfield]

On an SGS, you separate fields by
spaces and separate subfields by com-
mas. For example, in the SGSs in Figure
1, the value of [DISKPACK,3,4,1] is
"DRS003."

There is a temptation to create SGSs
that look something like this:

DISK 9720 UP FIX DO1,DRSO01

This SGS uses subfields in field 4 in
order to group similar fields. The two
subfields in field 4 represent pack names
(physical and |ogicor,J respectively). This
violates the fundamental relational tenet
that relations must be two-dimensional
(flat files). Rows and columns are all we
need to represent two dimensions. The
subfield provides a third dimension that is
undesirable when implementing rela-

tional queries. In addition, always settin
the subfield number to one simplifies o?l
SGS references in our skeletons to:

[label,occurrence, field, 1]

3) Use symbolic occurrence and field
references. Our SGS references should
look like “[DISKPACK,D,PACKID, 11"
rather than “[DISKPACK, 1,4,11."

We should use symbolic references for
the occurrence number and field number.
[We can use a numeric value for subfield
number since it should always be one.]
Making the occurrence number symbolic
decreases the chance of using SGSs po-
sitionally. An SGS reference such as
“IDISKPACK,1,4,1]" looks suspiciously
like this particular occurrence has some
special meaning not shown in the SGSs
themselves. If certain entiies do have
special characteristics, we should add an
attribute to the relation to capture this
meaning, rather than rely on the position
of occurrences within the relation.

. An even more serious problem with
numeric field numbers is that they make
the skeleton virtually unreadable and
difficult to maintain. Would you rather
encounter “[DISKPACK,D,4,1]" or
“[DISKPACK,D,PACKID, 117" The latter
tells you the field's purpose, while the
former only tells you its location. In addi-
tion, what would we do if we decide to
drop a field no longer needed? With

17

1100/2200 Forum

numeric field numbers, we would have a
lot of skeleton modifying and refesting to
do, whereas with symbolic field refer
ences, it is a simple change.

4) Create a relational catalog to document
5GSs. If we use symbolic field references,
we must tell SSG their numeric value. We
could do this by including a separate *SET
command for each field of each SGS that
a skeleton uses. For example:

*SET PACKID = 4

There is a serious drawback with this
approach. We want to capture as much
meaning as possible in the SGSs, but the
*SET commands must occur in each
skeleton that uses the SGSs. And these
*SET commands must know what the
SGSs look like.

A better way is to create a set of
"metaSGSs” — SGSs that describe the
fields in other SGSs. The RELATION SGSs
shown in Figure 2 accomplish this.

The RELATION SGSs provide a sym-
bolic field name for each attribute of a
relation. For example, the first RELATION
SGS in Figure 2 tells us the name of the
first field of the EQUIPMENT SGS is
"EMODEL.” Because the model number
attribute occurs in both relations, | added
a qualifying letter prefix (E or D) to each
of them. This is analogous to Structured
Query language [SQL) syntax such as
"EQUIPMENT.MODEL" and "DISK-
PACK.MODEL.”

Rather than include relation-specific
*SET statements for each field a skeleton
references, we can use generic code that
processes all RELATION SGSs and sub-
mits a * SET statement for each. This trivial
logic, presented in Figure 3, would be
*COPY'd into each skeleton as part ot its
initialization code. It creates global nu-
meric variables with the names and val-
ves specified by the REIATION SGSs.
The value of these variables indicates the
field position of the corresponding attrib-
ute in the SGS. This code is completely
general in that it will work for any SGSs
defined by RELATION SGSs. [Note that
Figure 3 violates the guideline about
avoiding numeric field references. This
single copy procedure is the only place |
do this.)

You can think of the RELATION SGS as
the relational catalog or data dictionary.
You might consider expanding it fo in-
clude other information {such as integrity
constraints).

5) Give every relation a unique identi-
fier. The identifier may be a single field
on the SGS or a combination of fields.
One of the most important reasons for

UNISPHERE

unique identifiers is that the primary key
of one relation is often used as a foreign
key in another relation. If duplicates were
allowed, the foreign key references
would be ambiguous.

6) Provide an explicit null. Often, an
attribute takes a null value in some rows
of a relation. For example, it a disk is
down, it is considered neither fixed nor
removable. Some SSG programmers han-
dle this by omitting the null field. Since
SGS references are positional, this only
works if the field is the rightmost field (or
rightmost subfield within a field). But this
approach is unwieldy and becomes un-
workable if several attributes in the same
row can be null.

A better approach is to use an explicit
character string to represent a null value.
The example in Figure 1 uses a single
backslash for this. It is very important to
pick a combination of characters that will
never occur naturally in your data.

7) Normalize your SGSs. The advan-
tages and disadvantages of normaliza-
tion are well-documented, as are the
various techniques. In short, 3NF involves
breaking repeating groups into separate
relations (SGSs) and ensuring that each
attribute depends on the primary key, the
whole primary key and nothing but the
primary key.

As well as being valuable in their own
right, the first six guidelines presented
here let you take advantage of normal-
ized SGSs. If you do attempt to imple-
ment 3NF data siructures with SSG, you
will quickly realize one major limitation:
SSG lacks tools to allow easy manipula-
tion of relations. You will have to code
loops and case structures that traverse
your relations and you may be tempted to
throw up your hands in disgust.

Why navigate through 3NF relations?

By implementing 3NF relations new, you
will have them when and if you acquire a
better tool for manipulating them. Some-
day, you may want to load them into a
commercial relational database. Or you
may choose to write your own query
language.

Conclusion

The next logical step in the develop-
ment of a quasi-relational SSG is to write
a set of general-purpose SSG subroutines
that provide a very powerful set of rela-
tional operators — a kind of “SQL for
SSG.” | have developed prototype SSG
subroutines that implement important rela-
tional and set operators such as select,
project, join, union and infersection. | am
also using 3NF SGSs as a medium to
support simulation of UNIX pipelines on
the 2200.

By implementing these types of tools in
conjunction with the SSG programming
guidelines described in this atticle, you
can quickly develop exiremely powertful
SSG-based baich jobs that support, for
example, automated operations. Even if
you don't want to go this far, following
these guidelines can lead to more main-
tainable SSG skeletons. A relational ap-
proach to SSG considerably enhances
the usefulness of what you may have
guessed is my favorite Unisys 1100/
2200 software product.

ABOUT THE AUTHOR

Steve J. Martin is a private contractor
providing technical support to league
Data ltd., a Unisys 2200 site in Hali-
fax, Nova Scotia. Mr. Martin has 10
years of experience in the computer
industry, using both Unisys and IBM
mainframes.

BUY ¢ SELL * LEASE

YOUR UNISYS DEALER IN THE 90s

Over 40 1100/2200 SERIES
yhears inf t AVE SYSTEM 80
the configuration TERMINALS
and sale of SYSTEMS UNIX
Sperry Unisys PC's
Equipment INCORPORATED COMMUNICATIONS

57 E. WASHINGTON ST . CHAGRIN FALLS, OHIO 44022 PHONE: (216) 247-2066
FAX (216) 247-8917
Circle 49 on Reader Service Card A

29

